Trimmed sample means for robust uniform mean estimation and regression
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Sample Means are everywhere...
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... but they are not robust against
contamination or outliers...

even changing
a single point leads to
unbounded error
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... and Chebyshev is sharp [1].
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We want to replace sample means to
e Deal with an &-fraction of sample
contamination,

X1 ~ P" /F X%n

* Have Gaussian tails even for heavy-tailed
distributions.
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We can use trimmed sample means 1 n—k
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Theorem 1 (informal). The cutoff k can be chosen to satisfy, for a given confidence
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The key idea is that for a given k and a one can find M, as a function of the problem
setup, such that the empirical process on the contaminated sample is close to a
trimmed (by M) process on the original sample, which concentrates nicely.

Theorem 2 (informal). If the class of functions is convex, we can use trimmed sample
means to perform regression with

fr = argminsup 77 , (Y — f(X))? = (Y — g(X))*)
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to estimate fp := argmin ;. zE(Y — f(X))? with an error of
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complexity term from [3] and [4]
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Heuristics to evaluate estimator:

o Alternate gradient descent: minimize in one
step and then maximizes,
e Plug-in: find the list of active indexes and fit,
iterate a few times.
Our experimental results show good performance
against OLS and Median of Means regression [3].
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Overall, our theoretical results improve upon the
results of Mendelson [4] and Lerasle-Lecué [3],
achieving optimal informational-theoretical
bounds. Moreover, our experimental results
show the power of trimmed sample means over
its main alternative, the Median of Means.
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